CHAPTER 25 NUCLEAR RADIATION

Marie Curie was a Polish scientist whose research led to many discoveries about radiation and radioactive elements. In 1934 she died from leukemia caused by her long-term exposure to radiation. You will learn about the various types of radiation and their effects.

RADIOACTIVITY

Radioactivity

How does an unstable nucleus release energy?

Marie Curie (1867-1934) and Pierre Curie (1859-1906)

 showed that rays emitted by uranium atoms caused fogging in photographic plates.

Radioactivity

process by which materials give off such rays.

Radiation

 The penetrating rays and particles emitted by a radioactive source.

- Nuclear reactions differ from chemical reactions in a number of important ways.
 - In chemical reactions
 - atoms tend to attain stable electron configurations by losing or sharing electrons.
 - In nuclear reactions
 - the nuclei of unstable isotopes, called radioisotopes, gain stability by undergoing changes.

 An unstable nucleus releases energy by emitting radiation during the process of radioactive decay.

Types of Radiation

• What are the three main types of nuclear radiation?

- Three main types of nuclear radiation:
 - alpha radiation
 - beta radiation
 - gamma radiation

- Alpha Radiation
 - consists of helium nuclei
 - have been emitted from a radioactive source
 - called alpha particles
 - contain two protons and two neutrons
 - have a double positive charge

$$\begin{array}{c} \overset{238}{92}\text{U} \xrightarrow{\text{Radioactive}} & \overset{234}{90}\text{Th} & + & \overset{4}{2}\text{He}\left(\alpha \text{ emission}\right) \\ \text{Uranium-238} & \text{Thorium-234} & \text{Alpha} \\ \text{particle} \end{array}$$

- Beta Radiation
 - An electron
 - from the breaking apart of a neutron
 - beta particle.

$$^1_0 n \longrightarrow ^1_1 H + ^0_{-1} e$$

Neutron Proton Electron (beta particle)

- Example:
 - Carbon-14
 - emits a beta particle
 - radioactive decay
 - to form nitrogen-14.

$$^{14}_{6}C \longrightarrow ^{14}_{7}N + _{-1}^{0}e (\beta \text{ emission})$$

Carbon-14 Nitrogen-14 Beta (radioactive) (stable) particle

Beta decay

Beta particle

Gamma Radiation

- high-energy photon
- emitted by a radioisotope
- called a gamma ray
- are electromagnetic radiation.

- Alpha particles are the least penetrating.
- Gamma rays are the most penetrating.

Table 25.1

Characteristics of Some Types of Radiation

Property	Alpha radiation	Beta radiation	Gamma radiation
Composition	Alpha particle (helium nucleus)	Beta particle (electron)	High-energy electro- magnetic radiation
Symbol	α, 4He	β, ₋₁ 0e	γ
Charge	2+	1-	0
Mass (amu)	4	1/1837	0
Common source	Radium-226	Carbon-14	Cobalt-60
Penetrating power	Low (0.05 mm body tissue)	Moderate (4 mm body tissue)	Very high (penetrates body easily)
Shielding	Paper, clothing	Metal foil	Lead, concrete (incompletely shields)

QUIZ.

- 1. Certain elements are radioactive because their atoms have
 - A. more neutrons than electrons.
 - B. an unstable nucleus.
 - C. a large nucleus.
 - D. more neutrons than protons.

- 2. An unstable nucleus releases energy by
 - A. emitting radiation.
 - B. thermal vibrations.
 - C. a chemical reaction.
 - D. giving off heat.

- 3. Which property does **NOT** describe an alpha particle?
 - A. 2+ charge
 - B. a relatively large mass
 - C. a negative charge
 - D. low penetrating power

- 4. When a radioactive nucleus releases a high-speed electron, the process can be described as
 - A. oxidation.
 - B. alpha emission.
 - C. beta emission.
 - D. gamma radiation.

END

